论文标题
由测量流的时间图定义的对称随机步行
A Symmetric Random Walk defined by the Time-One Map of a Geodesic Flow
论文作者
论文摘要
在本说明中,我们考虑由$(f,f,f,f^{ - 1})$ kalikow type系统定义的对称随机步行,其中$ f $是与双曲线歧管相对应的地理流的时间映射。我们为存在与相应的单位切线束相等的步行量相同的固定度量提供了必要和充分的条件。在这些情况下,推导了随机步行的一些动态后果。
In this note we consider a symmetric random walk defined by a $(f,f^{-1})$ Kalikow type system, where $f$ is the time-one map of the geodesic flow corresponding to an hyperbolic manifold. We provide necessary and sufficient conditions for the existence of an stationary measure for the walk that is equivalent to the volume in the corresponding unit tangent bundle. Some dynamical consequences for the random walk are deduced in these cases.