论文标题

打破沟通私有性 - 准确性三元素

Breaking the Communication-Privacy-Accuracy Trilemma

论文作者

Chen, Wei-Ning, Kairouz, Peter, Özgür, Ayfer

论文摘要

分布式学习和估计的两个主要挑战是1)保留当地样本的隐私; 2)将它们有效地传达给中央服务器,同时为端到端任务实现高精度。尽管在最近的文献中分别解决这些挑战的兴趣很大,但同时解决这两种挑战的治疗方法仍然很大程度上遗失了。在本文中,我们开发了新颖的编码和解码机制,这些机制同时在各种规范环境中实现了最佳的隐私和沟通效率。 特别是,我们考虑了$ \ varepsilon $ - 本地差异隐私和$ b $ bub-bit-bit Communication约束下的平均估计和频率估计问题的问题。对于平均估计,我们提出了一个基于Kashin的表示和随机抽样的方案,并在两个约束下都具有订单最佳估计误差。对于频率估计,我们提出了一种机制,该机制利用了Walsh-Hadamard矩阵的递归结构,并实现了所有隐私水平和通信预算的订单 - 最佳估计错误。作为副产品,我们还构建了一个分布估算机制,该机制对于所有隐私制度和通信约束都非常优势,扩大了限制在$ b = 1 $和$ \ varepsilon = o(1)$的最新工作。我们的结果表明,在联合隐私和沟通约束下进行智能编码可以产生与仅在任何一个约束下实现的最佳准确度匹配的性能。

Two major challenges in distributed learning and estimation are 1) preserving the privacy of the local samples; and 2) communicating them efficiently to a central server, while achieving high accuracy for the end-to-end task. While there has been significant interest in addressing each of these challenges separately in the recent literature, treatments that simultaneously address both challenges are still largely missing. In this paper, we develop novel encoding and decoding mechanisms that simultaneously achieve optimal privacy and communication efficiency in various canonical settings. In particular, we consider the problems of mean estimation and frequency estimation under $\varepsilon$-local differential privacy and $b$-bit communication constraints. For mean estimation, we propose a scheme based on Kashin's representation and random sampling, with order-optimal estimation error under both constraints. For frequency estimation, we present a mechanism that leverages the recursive structure of Walsh-Hadamard matrices and achieves order-optimal estimation error for all privacy levels and communication budgets. As a by-product, we also construct a distribution estimation mechanism that is rate-optimal for all privacy regimes and communication constraints, extending recent work that is limited to $b=1$ and $\varepsilon=O(1)$. Our results demonstrate that intelligent encoding under joint privacy and communication constraints can yield a performance that matches the optimal accuracy achievable under either constraint alone.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源