论文标题
墙壁厚的通道中的软液压:有限的Reynolds-number基态及其稳定性
Soft Hydraulics in Channels with Thick Walls: The Finite-Reynolds-Number Base State and Its Stability
论文作者
论文摘要
我们分析了耦合流量问题的基础状态的线性稳定性和在长而浅的矩形软液压导管和厚的顶壁中的变形。具体而言,稳定的基础状态以低但有限的雷诺数计算。然后,我们表明,使用固定的上游通量且出口压力设置为衡量,该流量是线性稳定的,可与无穷小的流动扰动。在减少的雷诺数字,$ \ hat {re} $和所谓的流体结构相互作用(FSI)参数($λ$)中计算多个振荡但稳定的本质模式,表明该FSI系统的刚度。这些结果提供了一个框架,以解决未来的工作中,双向FSI耦合对软液压导管中不稳定性和流动过渡的各个方面的个体影响。
We analyze the linear stability of the base state of the problem of coupled flow and deformation in a long and shallow rectangular soft hydraulic conduit with a thick top wall. Specifically, the steady base state is computed at low but finite Reynolds number. Then, we show that with the upstream flux fixed and the outlet pressure set to gauge, the flow is linearly stable to infinitesimal flow-wise perturbations. Multiple oscillatory but stable eigenmodes are computed in a range of the reduced Reynolds number, $\hat{Re}$, and the so-called fluid--structure interaction (FSI) parameter, $λ$, indicating the stiffness of this FSI system. These results provide a framework to address, in future work, the individual effects of various aspects of two-way FSI coupling on instability and flow transition in soft hydraulic conduits.