论文标题

使用深度学习对环境数据进行时空预测的新型框架

A Novel Framework for Spatio-Temporal Prediction of Environmental Data Using Deep Learning

论文作者

Amato, Federico, Guignard, Fabian, Robert, Sylvain, Kanevski, Mikhail

论文摘要

随着统计和计算科学在气候,环境建模和预测中所扮演的角色变得越来越重要,机器学习研究人员越来越意识到他们的工作的相关性,以帮助应对气候危机。实际上,作为通用的非线性函数近似工具,机器学习算法在分析和在空间和时间上可变的环境数据方面有效地有效。尽管深度学习模型已被证明能够通过其自动特征表示学习来捕获空间,时间和时空依赖性,但在太空中一组不规则点上测量的连续时空领域的插值的问题仍然不足。为了填补这一空白,我们在这里介绍了使用深度学习对气候和环境数据进行时空预测的框架。具体而言,我们展示了如何根据时间引用的基础函数的产物和随机空间系数的总和来分解时空过程,这些空间系数可以在正常网格上进行空间建模和映射,从而可以重建完整的时空信号。基于模拟和现实数据的两个案例研究的应用将显示拟议框架在建模相干时空场中的有效性。

As the role played by statistical and computational sciences in climate and environmental modelling and prediction becomes more important, Machine Learning researchers are becoming more aware of the relevance of their work to help tackle the climate crisis. Indeed, being universal nonlinear function approximation tools, Machine Learning algorithms are efficient in analysing and modelling spatially and temporally variable environmental data. While Deep Learning models have proved to be able to capture spatial, temporal, and spatio-temporal dependencies through their automatic feature representation learning, the problem of the interpolation of continuous spatio-temporal fields measured on a set of irregular points in space is still under-investigated. To fill this gap, we introduce here a framework for spatio-temporal prediction of climate and environmental data using deep learning. Specifically, we show how spatio-temporal processes can be decomposed in terms of a sum of products of temporally referenced basis functions, and of stochastic spatial coefficients which can be spatially modelled and mapped on a regular grid, allowing the reconstruction of the complete spatio-temporal signal. Applications on two case studies based on simulated and real-world data will show the effectiveness of the proposed framework in modelling coherent spatio-temporal fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源