论文标题

加权运算符值值功能空间应用于延迟系统的稳定性

Weighted operator-valued function spaces applied to the stability of delay systems

论文作者

Alajyan, A. E., Partington, J. R.

论文摘要

本文将禅宗空间的理论(右手半平面上的加权强/伯格\ - 人空间)扩展到希尔伯特空间有价值的情况,并描述了它们上的乘数;结果表明,$ h^\ infty $控制的方法可以扩展到加权$ l^2 $输入和输出空间的家族。接下来,分析具有操作员值传输功能的延迟延迟系统的特定情况,并通过开发标量案例中使用的Walton-Marshall技术的扩展来确定$ H^\ Infty $结构对延迟的依赖性。该方法用示例说明。

This paper extends the theory of Zen spaces (weighted Hardy/Berg\-man spaces on the right-hand half-plane) to the Hilbert-space valued case, and describes the multipliers on them; it is shown that the methods of $H^\infty$ control can therefore be extended to a family of weighted $L^2$ input and output spaces. Next, the particular case of retarded delay systems with operator-valued transfer functions is analysed, and the dependence of $H^\infty$ structure on the delay is determined by developing an extension of the Walton--Marshall technique used in the scalar case. The method is illustrated with examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源