论文标题

盐的卡尔曼过滤器:混合动力学系统上的卡尔曼过滤

The Salted Kalman Filter: Kalman Filtering on Hybrid Dynamical Systems

论文作者

Kong, Nathan J., Payne, J. Joe, Council, George, Johnson, Aaron M.

论文摘要

许多状态估计和控制算法都需要了解概率分布如何通过动态系统传播的知识。但是,尽管混合动力学系统在许多领域变得越来越重要,但在利用概率分布如何通过混合过渡映射的知识方面几乎没有工作。在这里,我们利用了采用盐矩阵(灵敏度方程的一阶更新)的传播定律来创建盐的卡尔曼过滤器(SKF),卡尔曼过滤器的自然扩展以及将卡尔曼过滤器扩展到混合动力学系统。远离混合事件,SKF是标准的卡尔曼滤波器。当发生混合事件时,盐矩阵作为系统动力学的角色起着相似的作用,随后诱导了对预测步骤和更新步骤的离散修改。 SKF的表现优于幼稚的变分更新 - 复位图的雅各布式 - 在状态估计中的平均平方误差减少,尤其是在混合过渡事件后立即。比较了混合粒子滤波器,仅当使用大量粒子时,粒子滤波器才能以平方平方误差优于SKF,这可能是由于对混合跃迁附近的拆分分布的更准确的核算。

Many state estimation and control algorithms require knowledge of how probability distributions propagate through dynamical systems. However, despite hybrid dynamical systems becoming increasingly important in many fields, there has been little work on utilizing the knowledge of how probability distributions map through hybrid transitions. Here, we make use of a propagation law that employs the saltation matrix (a first-order update to the sensitivity equation) to create the Salted Kalman Filter (SKF), a natural extension of the Kalman Filter and Extended Kalman Filter to hybrid dynamical systems. Away from hybrid events, the SKF is a standard Kalman filter. When a hybrid event occurs, the saltation matrix plays an analogous role as that of the system dynamics, subsequently inducing a discrete modification to both the prediction and update steps. The SKF outperforms a naive variational update - the Jacobian of the reset map - by having a reduced mean squared error in state estimation, especially immediately after a hybrid transition event. Compared a hybrid particle filter, the particle filter outperforms the SKF in mean squared error only when a large number of particles are used, likely due to a more accurate accounting of the split distribution near a hybrid transition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源