论文标题
在对数广义麦克斯韦理论中的环形涡旋
Ringlike vortices in a logarithmic generalized Maxwell theory
论文作者
论文摘要
我们研究了具有对数概括的麦克斯韦模型中涡流结构的存在。这种概括变得很重要,因为它在描述标量场的动力学的模型中生成了固定的场解决方案。在这项工作中,我们将选择使用由麦克斯韦(Maxwell)术语控制的量规场的复杂标量场的动力学。为此,我们将研究Bogomol'NYI方程以描述静态场配置。然后,我们从数值上表明,生成最小能量配置的复杂标量场解决方案具有内部结构。最后,假设平面视觉,磁场和密度能量显示了环形涡流的有趣特征。
We investigate the presence of vortex structures in a Maxwell model with a logarithmic generalization. This generalization becomes important because it generates stationary field solutions in models that describe the dynamics of a scalar field. In this work, we will choose to investigate the dynamics of the complex scalar field with the gauge field governed by Maxwell term. For this, we will investigate the Bogomol'nyi equations to describe the static field configurations. Then, we show numerically that the complex scalar field solutions that generate minimum energy configurations have internal structures. Finally, assuming a planar vision, the magnetic field and the density energy show the interesting feature of the ringlike vortex.