论文标题

COVID TV-UNET:使用连通性施加的U-NET分割Covid-19胸部CT图像

COVID TV-UNet: Segmenting COVID-19 Chest CT Images Using Connectivity Imposed U-Net

论文作者

Saeedizadeh, Narges, Minaee, Shervin, Kafieh, Rahele, Yazdani, Shakib, Sonka, Milan

论文摘要

新型的电晕病毒病(COVID-19)大流行在全球200多个国家引起了一次重大爆发,从而对全球许多人的健康和生活产生了严重影响。截至2020年7月中旬,有超过1200万人被感染,报告了超过570,000人死亡。计算机断层扫描(CT)图像可以用作耗时的RT-PCR检验的替代方法,以检测COVID-19。在这项工作中,我们提出了一个分割框架来检测CT图像中的胸部区域,该框架被Covid-19感染。我们使用类似于U-NET模型的架构,并在像素级别上训练它以检测地面玻璃区域。由于感染区域倾向于形成连接的组件(而不是随机分布的像素),我们为损耗函数添加了合适的正则化项,以促进Covid-19-19的分割图的连通性。 2D-Anisotropic总变化用于此目的,因此所提出的模型称为“ TV-UNET”。通过大约900张图像的相对大规模的CT分割数据集的实验结果,我们表明,与U-NET模型相比,添加此新的正则化项会导致总分段性能增长2 \%。我们的实验分析从对预测的分割结果的视觉评估到分割性能的定量评估(精度,召回,骰子得分和MIOU)表现出很大的能力,可以识别肺的相关区域,达到99 \%以上的MIOU速率,以及约为86 \%的点数。

The novel corona-virus disease (COVID-19) pandemic has caused a major outbreak in more than 200 countries around the world, leading to a severe impact on the health and life of many people globally. As of mid-July 2020, more than 12 million people were infected, and more than 570,000 death were reported. Computed Tomography (CT) images can be used as an alternative to the time-consuming RT-PCR test, to detect COVID-19. In this work we propose a segmentation framework to detect chest regions in CT images, which are infected by COVID-19. We use an architecture similar to U-Net model, and train it to detect ground glass regions, on pixel level. As the infected regions tend to form a connected component (rather than randomly distributed pixels), we add a suitable regularization term to the loss function, to promote connectivity of the segmentation map for COVID-19 pixels. 2D-anisotropic total-variation is used for this purpose, and therefore the proposed model is called "TV-UNet". Through experimental results on a relatively large-scale CT segmentation dataset of around 900 images, we show that adding this new regularization term leads to 2\% gain on overall segmentation performance compared to the U-Net model. Our experimental analysis, ranging from visual evaluation of the predicted segmentation results to quantitative assessment of segmentation performance (precision, recall, Dice score, and mIoU) demonstrated great ability to identify COVID-19 associated regions of the lungs, achieving a mIoU rate of over 99\%, and a Dice score of around 86\%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源