论文标题

在没有任务干扰的情况下,重新聚集卷积用于增量多任务学习

Reparameterizing Convolutions for Incremental Multi-Task Learning without Task Interference

论文作者

Kanakis, Menelaos, Bruggemann, David, Saha, Suman, Georgoulis, Stamatios, Obukhov, Anton, Van Gool, Luc

论文摘要

多任务网络通常用于减轻对大量高度专业的单任务网络的需求。但是,在文献中通常会忽略开发多任务模型的两个共同挑战。首先,使模型可以固有地增量,不断地合并新任务中的信息,而无需忘记先前学到的任务(增量学习)。其次,消除任务之间的不良交互作用,已证明在多任务设置(任务干扰)中显着降低了单任务性能。在本文中,我们表明,可以简单地通过将标准神经网络体系结构的卷积重新聚集到不可训练的共享零件(滤波器库)和特定于任务的零件(调制器)中来实现,其中每个调制器都有滤波器库参数的一部分。因此,我们的重新聚力力化使该模型能够学习新任务,而不会不利影响现有的任务。我们消融研究的结果证明了提出的重新聚集化的功效。此外,我们的方法在两个具有挑战性的多任务学习基准(Pascal-Context和Nyud)上实现了最先进的方法,并且与其近距离竞争者相比,还表现出了出色的递增学习能力。

Multi-task networks are commonly utilized to alleviate the need for a large number of highly specialized single-task networks. However, two common challenges in developing multi-task models are often overlooked in literature. First, enabling the model to be inherently incremental, continuously incorporating information from new tasks without forgetting the previously learned ones (incremental learning). Second, eliminating adverse interactions amongst tasks, which has been shown to significantly degrade the single-task performance in a multi-task setup (task interference). In this paper, we show that both can be achieved simply by reparameterizing the convolutions of standard neural network architectures into a non-trainable shared part (filter bank) and task-specific parts (modulators), where each modulator has a fraction of the filter bank parameters. Thus, our reparameterization enables the model to learn new tasks without adversely affecting the performance of existing ones. The results of our ablation study attest the efficacy of the proposed reparameterization. Moreover, our method achieves state-of-the-art on two challenging multi-task learning benchmarks, PASCAL-Context and NYUD, and also demonstrates superior incremental learning capability as compared to its close competitors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源