论文标题
Jacobi Sigma模型
Jacobi sigma models
论文作者
论文摘要
我们介绍了与雅各比歧管相关的二维Sigma模型。该模型是对提供拓扑开放弦理论的泊松西格玛模型的概括。在哈密顿方法中,一流的约束是得出的,这在差异性下产生了模型的规格不变性。减少的相空间是有限维度的。通过在目标上引入度量张量,获得了一个非探针Sigma模型,从而产生了用度量和B场的Polyakov作用,其目标空间是Jacobi歧管。
We introduce a two-dimensional sigma model associated with a Jacobi manifold. The model is a generalisation of a Poisson sigma model providing a topological open string theory. In the Hamiltonian approach first class constraints are derived, which generate gauge invariance of the model under diffeomorphisms. The reduced phase space is finite-dimensional. By introducing a metric tensor on the target, a non-topological sigma model is obtained, yielding a Polyakov action with metric and B-field, whose target space is a Jacobi manifold.