论文标题
基于RESNET生成神经网络的光子结构的多目标和分类全球优化
Multi-objective and categorical global optimization of photonic structures based on ResNet generative neural networks
论文作者
论文摘要
我们表明,基于全局拓扑优化网络(GLONETS)的深层生成神经网络可以配置为执行光子设备的多目标和分类全局优化。剩余网络方案使Glonets可以从深层体系结构中演变,该深度建筑需要在优化过程的早期正确搜索完整的设计空间,转变为生成狭窄的全球最佳设备分布的浅网络。作为概念验证的演示,我们适应了我们的方法设计由多种材料组成的薄膜堆栈。与常规算法相比,具有已知全球性反射结构的已知基准测试表明,Glonets可以以更快的速度找到全局最佳。我们还证明了我们在复杂的设计任务中及其在白炽灯过滤器中的应用中的实用性。这些结果表明,深度学习中的高级概念可以推动光子学逆设计算法的功能。
We show that deep generative neural networks, based on global topology optimization networks (GLOnets), can be configured to perform the multi-objective and categorical global optimization of photonic devices. A residual network scheme enables GLOnets to evolve from a deep architecture, which is required to properly search the full design space early in the optimization process, to a shallow network that generates a narrow distribution of globally optimal devices. As a proof-of-concept demonstration, we adapt our method to design thin film stacks consisting of multiple material types. Benchmarks with known globally-optimized anti-reflection structures indicate that GLOnets can find the global optimum with orders of magnitude faster speeds compared to conventional algorithms. We also demonstrate the utility of our method in complex design tasks with its application to incandescent light filters. These results indicate that advanced concepts in deep learning can push the capabilities of inverse design algorithms for photonics.