论文标题
非孤立固定点较少的非汉密尔顿动作
Non-Hamiltonian actions with fewer isolated fixed points
论文作者
论文摘要
在较早的论文中,第二作者通过在封闭的,连接的六维符号歧管上构造非汉顿象征圆的动作来解决麦克杜夫问题,并恰好32个固定点。在本文中,我们通过减少固定点的数量来改进此示例。更具体地说,我们在封闭的,连接的六维符号歧管上构建了一个非Hamiltonian Simplectic Circle动作,任何$ K \ geq 5 $,恰好$ 2K $固定点。
In an earlier paper, the second author resolved a question of McDuff by constructing a non-Hamiltonian symplectic circle action on a closed, connected six-dimensional symplectic manifold with exactly 32 fixed points. In this paper, we improve on this example by reducing the number of fixed points. More concretely, we construct a non-Hamiltonian symplectic circle action on a closed, connected six-dimensional symplectic manifold with exactly $2k$ fixed points for any $k \geq 5$.