论文标题
使用CNN检测恶意PDF
Detecting malicious PDF using CNN
论文作者
论文摘要
恶意PDF文件代表了对计算机安全的最大威胁之一。为了检测它们,已经使用手写的特征提取的手写标志或机器学习进行了重大研究。这些方法既耗时又需要大量的先验知识,并且必须在每个新发现的漏洞中更新功能列表。在这项工作中,我们提出了一种新颖的算法,该算法在文件的字节级别上使用了卷积神经网络(CNN)的集合,而没有任何手工制作的功能。我们使用可在线下载的90000个文件的数据集显示,我们的方法维持了PDF恶意软件的高检测率(94%),甚至可以检测到新的恶意文件,但仍未被大多数防病毒所发现。使用从CNN网络中自动生成的功能,并应用聚类算法,我们还获得了防病毒标签和所得簇之间的高相似性。
Malicious PDF files represent one of the biggest threats to computer security. To detect them, significant research has been done using handwritten signatures or machine learning based on manual feature extraction. Those approaches are both time-consuming, require significant prior knowledge and the list of features has to be updated with each newly discovered vulnerability. In this work, we propose a novel algorithm that uses an ensemble of Convolutional Neural Network (CNN) on the byte level of the file, without any handcrafted features. We show, using a data set of 90000 files downloadable online, that our approach maintains a high detection rate (94%) of PDF malware and even detects new malicious files, still undetected by most antiviruses. Using automatically generated features from our CNN network, and applying a clustering algorithm, we also obtain high similarity between the antiviruses' labels and the resulting clusters.