论文标题

dranscombilitédesModèles:étatdes lieuxdesMéthodeset applicationàl'Assurance

Interpretabilité des modèles : état des lieux des méthodes et application à l'assurance

论文作者

Delcaillau, Dimitri, Ly, Antoine, Vermet, Franck, Papp, Alizé

论文摘要

自2018年5月以来,一般数据保护法规(GDPR)已向行业提出了新的义务。通过设定法律框架,它显着对使用个人数据施加了强大的透明度。因此,必须告知人们使用数据的使用,并且必须同意其使用情况。数据是许多模型的原材料,如今,可以提高数字服务的质量和性能。使用数据的透明度还需要通过不同模型对其使用有很好的了解。即使有效的效率,模型的使用也必须伴随着转换数据的各个级别的理解(模型的上游和下游),从而可以定义个人数据与算法可以根据后者分析可以做出的选择之间的关系。 (例如,一种产品或一种促销优惠或代表风险的保险费率的建议。)用户必须确保模型不会歧视,并且也可以解释其结果。预测算法面板的扩大 - 通过计算能力的发展使科学家对使用模型的使用保持警惕,并考虑使用新工具来更好地了解从中推出的决策。最近,在过去三年中,社区尤其活跃于模型透明度上,出版物的出版物有明显的强化。越来越频繁地使用更复杂的算法(\ textit {深度学习},XGBOOST等)表现有吸引力的表演无疑是引起这种兴趣的原因之一。因此,本文介绍了在保险环境中解释模型及其用途的方法的清单。

Since May 2018, the General Data Protection Regulation (GDPR) has introduced new obligations to industries. By setting a legal framework, it notably imposes strong transparency on the use of personal data. Thus, people must be informed of the use of their data and must consent the usage of it. Data is the raw material of many models which today make it possible to increase the quality and performance of digital services. Transparency on the use of data also requires a good understanding of its use through different models. The use of models, even if efficient, must be accompanied by an understanding at all levels of the process that transform data (upstream and downstream of a model), thus making it possible to define the relationships between the individual's data and the choice that an algorithm could make based on the analysis of the latter. (For example, the recommendation of one product or one promotional offer or an insurance rate representative of the risk.) Models users must ensure that models do not discriminate against and that it is also possible to explain its result. The widening of the panel of predictive algorithms - made possible by the evolution of computing capacities -- leads scientists to be vigilant about the use of models and to consider new tools to better understand the decisions deduced from them . Recently, the community has been particularly active on model transparency with a marked intensification of publications over the past three years. The increasingly frequent use of more complex algorithms (\textit{deep learning}, Xgboost, etc.) presenting attractive performances is undoubtedly one of the causes of this interest. This article thus presents an inventory of methods of interpreting models and their uses in an insurance context.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源