论文标题
基于用于计算非线性双曲进化方程的光谱方法的数值方案
Numerical scheme based on the spectral method for calculating nonlinear hyperbolic evolution equations
论文作者
论文摘要
基于光谱方法提出了非线性双曲进化方程的高精度数值方案。在一维klein-gordon方程的情况下,讨论了细节离散过程。总之,提出了一个数值方案,其总计算费用$ O(N \ log 2n)$。作为基准结果,证明了数值精度和离散单位大小之间的关系。
High-precision numerical scheme for nonlinear hyperbolic evolution equations is proposed based on the spectral method. The detail discretization processes are discussed in case of one-dimensional Klein-Gordon equations. In conclusion, a numerical scheme with the order of total calculation cost $O(N \log 2N)$ is proposed. As benchmark results, the relation between the numerical precision and the discretization unit size are demonstrated.