论文标题
从光度变异性的贝叶斯动态映射
Bayesian Dynamic Mapping of an Exo-Earth from Photometric Variability
论文作者
论文摘要
直接成像的外射线的光度变异性传达了其表面上的空间信息,可用于检索行星的二维地理和轴向倾斜(旋转轨道断层扫描)。在这项研究中,我们放宽了静态地理的假设,并为适用于时变地理的动态自旋轨道层析成像提供了一个可计算障碍的框架。首先,使用高斯先验的贝叶斯反问题的分析表达式对静态自旋轨道层析成像进行了贝叶斯框架。然后,我们通过时域的高斯过程将该分析框架扩展到了一个时间变化的框架,并呈现分析表达式,从而使高斯阶段中的地理,轴向倾斜,自旋旋转期和超参数的完整关节后部分布有效地采样。因此,笔记本计算机仅需0.3 s即可在其他参数上采样一个后部动态地图,该映射以3,072像素和1,024个时间网格为条件,总计$ \ sim 3 \ times 10^6 $参数。我们在玩具模型上应用了动态映射方法,发现与轴向倾斜和自旋旋转期一起准确检索了随时间变化的地理位置。此外,我们证明了使用Deep Space气候天文台观察到的地球的真实多色光曲线的动态自旋层造影术的使用。我们发现,主要成分分析的主要成分的快照大致捕获了地球上晴朗和多云的大规模,季节性变化。
Photometric variability of a directly imaged exo-Earth conveys spatial information on its surface and can be used to retrieve a two-dimensional geography and axial tilt of the planet (spin-orbit tomography). In this study, we relax the assumption of the static geography and present a computationally tractable framework for dynamic spin-orbit tomography applicable to the time-varying geography. First, a Bayesian framework of static spin-orbit tomography is revisited using analytic expressions of the Bayesian inverse problem with a Gaussian prior. We then extend this analytic framework to a time-varying one through a Gaussian process in time domain, and present analytic expressions that enable efficient sampling from a full joint posterior distribution of geography, axial tilt, spin rotation period, and hyperparameters in the Gaussian-process priors. Consequently, it only takes 0.3 s for a laptop computer to sample one posterior dynamic map conditioned on the other parameters with 3,072 pixels and 1,024 time grids, for a total of $\sim 3 \times 10^6$ parameters. We applied our dynamic mapping method on a toy model and found that the time-varying geography was accurately retrieved along with the axial-tilt and spin rotation period. In addition, we demonstrated the use of dynamic spin-orbit tomography with a real multi-color light curve of the Earth as observed by the Deep Space Climate Observatory. We found that the resultant snapshots from the dominant component of a principle component analysis roughly captured the large-scale, seasonal variations of the clear-sky and cloudy areas on the Earth.