论文标题

多线性利特伍德 - 帕利 - 斯泰因运算师在非殖民空间上

Multilinear Littlewood-Paley-Stein Operators on Non-homogeneous Spaces

论文作者

Cao, Mingming, Xue, Qingying

论文摘要

让$κ\ ge 2,λ> 1 $,然后通过$$ g_ {λ,μ}^*(\ vec {f})定义多线性littlewood-paley-stein操作员(\ x)= \ bigG(\ bigg(\ bigG(\ iint _ {\ iint _ {\ mathbb { \ bigg | \ int _ {\ Mathbb {r}^{nk}} s_t(y,\ vec {z})\ prod_ {i = 1}^κf_i(z_i)\dμ(z_i)\dμ(z_i) dt} {t^{m + 1}}} \ bigG)^{\ frac12},$$其中$ \ vartheta_t(x,x,y)= \ big(\ frac {t} {t + | x -y | x -y | |} \ big)^{mλ} $。在本文中,我们的主要目的是研究非均匀空间上$ g_ {λ,μ}^*$的界限。通过概率和二元技术,以及非均匀分析,我们表明$ g_ {λ,μ}^*$从$ l^{p_1}(μ)\ times \ cdots \ cdots \ times \ times \ times \ times l^times l^{p_κ}(p_κ}(μ)$ l^p(μ)$ l^p(μ)$ pats Pustions $ pusity Pustions $下来。多线性非卷积类型内核$ s_t $仅需要比多线性calderón-Zygmund型内核的标准条件满足某些弱条件,而这些措施$μ$仅被认为是上层两倍的措施(不加倍)。即使在勒布斯格措施下,上述结果也是新的。这是通过首先考虑到基于终点假设的$ g_ {λ,μ}^*$的强类型界限的足够条件来完成的,然后直接从弱类型假设上推导出强限制的大块。

Let $κ\ge 2, λ> 1$ and define the multilinear Littlewood-Paley-Stein operators by $$g_{λ,μ}^*(\vec{f})(x) = \bigg(\iint_{\mathbb{R}^{n+1}_{+}} \vartheta_t(x, y) \bigg|\int_{\mathbb{R}^{n κ}} s_t(y,\vec{z}) \prod_{i=1}^κ f_i(z_i) \ dμ(z_i)\bigg|^2 \frac{dμ(y) dt}{t^{m+1}}\bigg)^{\frac12}, $$ where $\vartheta_t(x, y)=\big(\frac{t}{t + |x - y|}\big)^{m λ}$. In this paper, our main aim is to investigate the boundedness of $g_{λ,μ}^*$ on non-homogeneous spaces. By means of probabilistic and dyadic techniques, together with non-homogeneous analysis, we show that $g_{λ,μ}^*$ is bounded from $L^{p_1}(μ) \times \cdots \times L^{p_κ}(μ)$ to $L^p(μ)$ under certain weak type assumptions. The multilinear non-convolution type kernels $s_t$ only need to satisfy some weaker conditions than the standard conditions of multilinear Calderón-Zygmund type kernels and the measures $μ$ are only assumed to be upper doubling measures (non-doubling). The above results are new even under Lebesgue measures. This was done by considering first a sufficient condition for the strong type boundedness of $g_{λ,μ}^*$ based on an endpoint assumption, and then directly deduce the strong bound on a big piece from the weak type assumptions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源