论文标题
曼反期在重力能量中的作用
Role of Mann Counterterm in Gravitational Energy
论文作者
论文摘要
1999年,R。B。Mann提出了一个反术,是对众所周知的全息逆期的某种概括,可以消除渐近ADS的重力作用的差异和平坦的空间(Phys。D$ Rev. D $ \ BoldSymbol {60}} $(1999)$(1999)104047 [1])。我表明,这不仅是为了消除这种空间的差异,而且还用于将基态能量设置为零,任何$ d $二维的空位,并使用$ s^{d-2} \ times \ times \ times \ times \ times \ times \ times \ mathbb {r} $边界几何形状,并指出与任何(合适的(合适的)几何学的间距和topoly和Toopoly和Toopoly和Toopoly和Toopoly和Toopoly和Toopoly和Toopoly和Toopoly and Tosoly也是如此。
In 1999, R. B. Mann proposed a counterterm that is some sort of generalization of the well-known Holographic counterterm and that can eliminate the divergence of the gravitational action of asymptotically AdS and flat spacetimes (Phys. Rev. D $\boldsymbol{60}$ (1999) 104047 [1]). I show it is not only for eliminating the divergence of such spacetimes but also for setting the ground state energy to zero for any $d$-dimensional spacetimes with an $S^{d-2} \times \mathbb{R} $ boundary geometry, and speculate it is also true for spacetimes with any (suitable) boundary geometry and topology.