论文标题
颅内血液动力学模拟:有效且准确的浸润边界方案
Intracranial hemodynamics simulations: An efficient and accurate immersed boundary scheme
论文作者
论文摘要
计算流体动力学(CFD)研究越来越多地用于颅内动脉瘤(ICA)中的血流模拟。但是,尽管车身CFD求解器的持续进展不断,但生成高质量的网格仍然是CFD模拟的瓶颈,并且强烈影响数值溶液的准确性。为了克服这一挑战,这将允许在大量动脉瘤情况下有效地进行CFD模拟,我们使用浸没的边界(IB)方法。所提出的方案依靠笛卡尔网格来使用有限元求解器解决不可压缩的Navier-Stokes(N-S)方程,而Lagrangian点可以离散浸入的对象。所有网格世代都是通过不需要用户输入的自动化算法进行的。因此,我们通过将我们的数值(速度值)与已发表的实验结果进行比较来验证所提出的方法。最后,我们测试了该方案在四个患者特异性颅内动脉瘤样品中有效处理复杂几何形状上血液动力学模拟的能力。
Computational fluid dynamics (CFD) studies have been increasingly used for blood flow simulations in intracranial aneurysms (ICAs). However, despite the continuous progress of body-fitted CFD solvers, generating a high quality mesh is still the bottleneck of the CFD simulation, and strongly affects the accuracy of the numerical solution. To overcome this challenge, which will allow preforming CFD simulations efficiently for a large number of aneurysm cases we use an Immersed Boundary (IB) method. The proposed scheme relies on Cartesian grids to solve the incompressible Navier-Stokes (N-S) equations, using a finite element solver, and Lagrangian points to discretize the immersed object. All grid generations are conducted through automated algorithms which require no user input. Consequently, we verify the proposed method by comparing our numerical findings (velocity values) with published experimental results. Finally, we test the ability of the scheme to efficiently handle hemodynamic simulations on complex geometries on a sample of four patient-specific intracranial aneurysms.