论文标题
迭代的圆环链接的签名
Signatures of iterated torus links
论文作者
论文摘要
我们计算任何塞弗特链路的多元特征(这是塞弗特同源性球体中某些纤维的结合),尤其是与圆环链接与其一个或两个核心的联合(核心圆环链路)的结合。 Cored圆环链路的签名用于Degtyarev-Florens-Lecuona剪接公式,用于计算电缆的多元特征,而不是链接。我们使用Neumann对此类链接的符号的计算。 对于圆环的签名,我们还根据某个平行四边形中的积分点来重写Neumann的公式,类似于Hirzebruch的公式,用于通过矩形中的整数点(无核)的圆环链接(无核)签名。
We compute the multivariate signatures of any Seifert link (that is a union of some fibers in a Seifert homology sphere), in particular, of the union of a torus link with one or both of its cores (cored torus link). The signatures of cored torus links are used in Degtyarev-Florens-Lecuona splicing formula for computation of multivariate signatures of cables over links. We use Neumann's computation of equivariant signatures of such links. For signatures of torus links with the core(s) we also rewrite the Neumann's formula in terms of integral points in a certain parallelogram, similar to Hirzebruch's formula for signatures of torus links (without cores) via integral points in a rectangle.