论文标题
多代理轨迹的动态关系推断
Dynamic Relational Inference in Multi-Agent Trajectories
论文作者
论文摘要
从多代理轨迹中推断相互作用在物理,视力和机器人技术中具有广泛的应用。神经关系推理(NRI)是一个深层生成模型,可以理解复杂动态的关系而无需监督。在本文中,我们仔细研究了这种方法来推断多代理轨迹的关系。首先,我们发现没有足够的长期观察,NRI可以从根本上受到限制。它的准确推断相互作用的能力大大降低了短输出序列。接下来,当交互改变加班时,我们将考虑更一般的关系推断设置。我们提出了一个NRI的扩展,我们称之为动态多赋值推理(DYARI)模型,可以推理动态关系。我们进行详尽的实验,以研究模型架构,莱特动态和训练方案对使用模拟物理系统动态关系推断的性能的影响。我们还展示了模型对现实世界多代理篮球轨迹的用法。
Inferring interactions from multi-agent trajectories has broad applications in physics, vision and robotics. Neural relational inference (NRI) is a deep generative model that can reason about relations in complex dynamics without supervision. In this paper, we take a careful look at this approach for relational inference in multi-agent trajectories. First, we discover that NRI can be fundamentally limited without sufficient long-term observations. Its ability to accurately infer interactions degrades drastically for short output sequences. Next, we consider a more general setting of relational inference when interactions are changing overtime. We propose an extension ofNRI, which we call the DYnamic multi-AgentRelational Inference (DYARI) model that can reason about dynamic relations. We conduct exhaustive experiments to study the effect of model architecture, under-lying dynamics and training scheme on the performance of dynamic relational inference using a simulated physics system. We also showcase the usage of our model on real-world multi-agent basketball trajectories.