论文标题
VFL:一种可验证的联合学习,并具有隐私性的大数据
VFL: A Verifiable Federated Learning with Privacy-Preserving for Big Data in Industrial IoT
论文作者
论文摘要
由于大数据的分析能力很强,因此深入学习已被广泛应用于培训工业物联网中收集的数据。但是,对于隐私问题,传统的数据集中学习不适用于对培训集敏感的工业场景。最近,Federated学习引起了广泛的关注,因为它仅依靠梯度聚合而无需访问训练集来训练模型。但是现有的研究表明,共享梯度仍然保留培训集的敏感信息。更糟糕的是,恶意聚合服务器可能会返回伪造的聚合梯度。在本文中,我们提出了对工业物联网中的大数据的隐私性,可以通过隐私提供的VFL,可验证的联合学习。具体而言,我们使用拉格朗日插值来精心设置插值点,以验证聚合梯度的正确性。与现有方案相比,无论参与者的数量如何,VFL的验证开销仍然保持恒定。此外,我们采用盲目技术来保护参与者提交的梯度的隐私。如果N-2不超过N-2参与者与聚合服务器合并,则VFL可以保证其他参与者不会被倒置的加密梯度。实验评估证实了提出的VFL框架的实际性能,以高精度和效率。
Due to the strong analytical ability of big data, deep learning has been widely applied to train the collected data in industrial IoT. However, for privacy issues, traditional data-gathering centralized learning is not applicable to industrial scenarios sensitive to training sets. Recently, federated learning has received widespread attention, since it trains a model by only relying on gradient aggregation without accessing training sets. But existing researches reveal that the shared gradient still retains the sensitive information of the training set. Even worse, a malicious aggregation server may return forged aggregated gradients. In this paper, we propose the VFL, verifiable federated learning with privacy-preserving for big data in industrial IoT. Specifically, we use Lagrange interpolation to elaborately set interpolation points for verifying the correctness of the aggregated gradients. Compared with existing schemes, the verification overhead of VFL remains constant regardless of the number of participants. Moreover, we employ the blinding technology to protect the privacy of the gradients submitted by the participants. If no more than n-2 of n participants collude with the aggregation server, VFL could guarantee the encrypted gradients of other participants not being inverted. Experimental evaluations corroborate the practical performance of the presented VFL framework with high accuracy and efficiency.