论文标题
广义Gelfand-Shilov空间的Moyal乘数代数的包含定理
Inclusion theorems for the Moyal multiplier algebras of generalized Gelfand-Shilov spaces
论文作者
论文摘要
我们证明,$ s $ s $ type $ s $的通用Gelfand-Shilov空间的Moyal乘数代数包含$ \ Mathcal E $的Palamodov空间,并且包含地图是连续的。我们还直接证明了Palamodov的空间在代数和拓扑上是同构的,这是相应的$ s $类型空间的强大空间的强大二元。获得的结果提供了一种有效的方法来描述伪数字运算符的属性,并在类型$ \ Mathcal E $的空间中具有符号。
We prove that the Moyal multiplier algebras of the generalized Gelfand-Shilov spaces of type $S$ contain Palamodov spaces of type $\mathcal E$ and the inclusion maps are continuous. We also give a direct proof that the Palamodov spaces are algebraically and topologically isomorphic to the strong duals of the spaces of convolutors for the corresponding spaces of type $S$. The obtained results provide an effective way to describe the properties of pseudodifferential operators with symbols in the spaces of type $\mathcal E$.