论文标题
由于磁场弱,石墨烯中持续的弗里德尔振荡
Persistent Friedel oscillations in Graphene due to a weak magnetic field
论文作者
论文摘要
2D石墨烯薄片中狄拉克电子的两种相反的手势对弗里德尔的振荡进行了强烈的修改:石墨烯中杂质周围静电电位的衰减速度要比2D电子气体中的速度快得多。在距离$ r $上,比de broglie波长大得多,它衰减为$ 1/r^3 $。在这里,我们表明弱均匀磁场以异常方式影响弗里德尔的振荡。它创建了一个与字段相关的贡献,该贡献是{\ em占主导地位}在一个大的空间间隔$ p_0^{ - 1} \ sillsim r \ sillsim r \ sillsim k_fl^2 $中,其中$ l $是磁性长度,$ k_f $是fermi Momennum and fermi Momentum and fermi Momennum and $ p_0^{ - 1^{ - 1} =(k_fl)=(k_fl)=(k_fl)=(k_fl)=(4/3)此外,在此间隔中,依赖于场的振荡不会随距离衰减。该作用来自电子传播器积累的自旋依赖性磁相。所获得的相可能会引起石墨烯和基于石墨烯的异质结构的运输和热力学特征的新型相互作用。
Two opposite chiralities of Dirac electrons in a 2D graphene sheet modify the Friedel oscillations strongly: electrostatic potential around an impurity in graphene decays much faster than in 2D electron gas. At distances $r$ much larger than the de Broglie wavelength, it decays as $1/r^3$. Here we show that a weak uniform magnetic field affects the Friedel oscillations in an anomalous way. It creates a field-dependent contribution which is {\em dominant} in a parametrically large spatial interval $p_0^{-1}\lesssim r\lesssim k_Fl^2$, where $l$ is the magnetic length, $k_F$ is Fermi momentum and $p_0^{-1}=(k_Fl)^{4/3}/k_F$. Moreover, in this interval, the field-dependent oscillations do not decay with distance. The effect originates from a spin-dependent magnetic phase accumulated by the electron propagator. The obtained phase may give rise to novel interaction effects in transport and thermodynamic characteristics of graphene and graphene-based heterostructures.