论文标题
绿树的高度
The height of Mallows trees
论文作者
论文摘要
随机二进制搜索树是通过递归将元素$σ(1),σ(2),\ ldots,σ(n)$的元素$σ(n)$ $σ(n)$ [n] = n] = \ {1,\ dots,n \} $插入二元搜索树数据结构的。 Devroye(1986)证明了此类树的高度在$ c^*\ log n $的顺序上,其中$ c^*= 4.311 \ ldots $是$ c \ log((2e)/c)= 1 $的唯一解决方案,带有$ c \ geq 2 $。在本文中,我们研究了二进制搜索树的结构$ t_ {n,q} $从木匠排列中构建的$。 a $ \ textrm {mallows}(q)$排列是$ [n] = \ {1,\ ldots,n \} $的随机排列,其概率与$ q^{\ textrm {invt}(inv}(σ)}(σ)} $,wher σ(j)\} $。该模型概括了随机二进制搜索树,因为$ \ textrm {mallows}(q)$ $ q = 1 $的排列是均匀分布的。 $ t_ {n,q} $和$ t_ {n,q^{ - 1}} $的定律与简单的对称性相关(切换左和右子女的角色),因此足以将注意力限制在$ q \ leq1 $上。 我们表明,对于[0,1] $中的$ q \,$ t_ {n,q} $的高度是渐近$(1 + o(1))(c^* \ log n + n + n + n + n(1-q))$。这产生了$ t_ {n,q} $的高度的三个行为制度,具体取决于$ n(1-q)/\ log n $趋于零,倾向于无穷大,还是远离零和无穷大。特别是,当$ n(1-q)/\ log n $趋于零时,$ t_ {n,q} $的高度是渐近的$ c^*\ log n $,就像是随机二进制搜索树一样。最后,当$ n(1-q)/\ log n $倾向于无穷大时,我们证明了$ t_ {n,q} $的高度的尾部界限和分布限制定理。
Random binary search trees are obtained by recursively inserting the elements $σ(1),σ(2),\ldots,σ(n)$ of a uniformly random permutation $σ$ of $[n]=\{1,\dots,n\}$ into a binary search tree data structure. Devroye (1986) proved that the height of such trees is asymptotically of order $c^*\log n$, where $c^*=4.311\ldots$ is the unique solution of $c \log((2e)/c)=1$ with $c \geq 2$. In this paper, we study the structure of binary search trees $T_{n,q}$ built from Mallows permutations. A $\textrm{Mallows}(q)$ permutation is a random permutation of $[n]=\{1,\ldots,n\}$ whose probability is proportional to $q^{\textrm{Inv}(σ)}$, where $\textrm{Inv}(σ) = \#\{i < j: σ(i) > σ(j)\}$. This model generalizes random binary search trees, since $\textrm{Mallows}(q)$ permutations with $q=1$ are uniformly distributed. The laws of $T_{n,q}$ and $T_{n,q^{-1}}$ are related by a simple symmetry (switching the roles of the left and right children), so it suffices to restrict our attention to $q\leq1$. We show that, for $q\in[0,1]$, the height of $T_{n,q}$ is asymptotically $(1+o(1))(c^* \log n + n(1-q))$ in probability. This yields three regimes of behaviour for the height of $T_{n,q}$, depending on whether $n(1-q)/\log n$ tends to zero, tends to infinity, or remains bounded away from zero and infinity. In particular, when $n(1-q)/\log n$ tends to zero, the height of $T_{n,q}$ is asymptotically of order $c^*\log n$, like it is for random binary search trees. Finally, when $n(1-q)/\log n$ tends to infinity, we prove stronger tail bounds and distributional limit theorems for the height of $T_{n,q}$.