论文标题

从统一的贝叶斯和频繁的角度来看

The look-elsewhere effect from a unified Bayesian and frequentist perspective

论文作者

Bayer, Adrian E., Seljak, Uros

论文摘要

当搜索大型参数空间以获取事件,峰,物体或颗粒等异常时,会发现很大的概率可能会发现具有高显着性的虚假信号。这就是所谓的elsewhere效应,并且在宇宙学,(Astro)粒子物理学及其他地区都普遍存在。为了避免提出错误的检测主张,在分配异常的统计意义时必须考虑这种效果。这通常是通过考虑试验因子来完成的,该因素通常是通过潜在昂贵的模拟来数值计算的。在本文中,我们通过应用Laplace近似来评估Bonferroni和Sidak校正的持续概括,然后将试验因子与先前的后者体积比相关。我们使用它来定义一个测试统计量,其频繁属性在全局$ p $值或统计意义方面具有简单的解释。我们将此方法应用于各种基于物理的示例,并证明它可以很好地适用于$ p $值的整个范围,即在渐近和非催化性方案中。我们还表明,这种方法自然说明了其他模型复杂性,例如额外的自由度,概括了威尔克斯的定理。这提供了一种快速的方法来根据位置效果来量化统计显着性,而无需诉诸昂贵的模拟。

When searching over a large parameter space for anomalies such as events, peaks, objects, or particles, there is a large probability that spurious signals with seemingly high significance will be found. This is known as the look-elsewhere effect and is prevalent throughout cosmology, (astro)particle physics, and beyond. To avoid making false claims of detection, one must account for this effect when assigning the statistical significance of an anomaly. This is typically accomplished by considering the trials factor, which is generally computed numerically via potentially expensive simulations. In this paper we develop a continuous generalization of the Bonferroni and Sidak corrections by applying the Laplace approximation to evaluate the Bayes factor, and in turn relating the trials factor to the prior-to-posterior volume ratio. We use this to define a test statistic whose frequentist properties have a simple interpretation in terms of the global $p$-value, or statistical significance. We apply this method to various physics-based examples and show it to work well for the full range of $p$-values, i.e. in both the asymptotic and non-asymptotic regimes. We also show that this method naturally accounts for other model complexities such as additional degrees of freedom, generalizing Wilks' theorem. This provides a fast way to quantify statistical significance in light of the look-elsewhere effect, without resorting to expensive simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源