论文标题
多人多机器人团队的自适应工作负载分配,用于独立和同质任务
Adaptive Workload Allocation for Multi-human Multi-robot Teams for Independent and Homogeneous Tasks
论文作者
论文摘要
多人类多机器人(MH-MR)系统具有将机器人系统与使人类在循环中的人的潜在优势相结合的能力。机器人系统在不累人的情况下对重复任务的精确表现和长期操作,而循环中的人则提高了情境意识并增强决策能力。系统能够使分配的工作量适应不断变化的条件以及任务过程中每个人(人类和机器人)的性能对于保持整体系统性能至关重要。以前的文献作品(包括基于市场的和优化方法)试图解决任务/工作负载分配问题,重点是最大化系统输出而无需个人代理条件,而缺乏实时处理,并且主要集中于多机器人系统。鉴于团队(自主机器人和人类经营的机器人:一次操作任何数量机器人的任何数量的人类运营商)和MH-MR系统的操作量表的各种组合,因此,开发了一般的工作负载分配框架是一项特别具有挑战性的任务。在本文中,我们为独立均匀任务提供了这样的框架,能够与人类经营和自主机器人实时的健康状况和工作表现适应系统的工作量。该框架由可移动的模块化功能块组成,确保其对不同MH-MR方案的适用性。新的工作负载过渡功能块可确保平稳过渡,而无需对单个代理产生不利影响。通过在MH-MR巡逻方案中应用人类和机器人条件的MH-MR巡逻方案以及失败的机器人,将系统工作负载适应性的有效性和可扩展性验证。
Multi-human multi-robot (MH-MR) systems have the ability to combine the potential advantages of robotic systems with those of having humans in the loop. Robotic systems contribute precision performance and long operation on repetitive tasks without tiring, while humans in the loop improve situational awareness and enhance decision-making abilities. A system's ability to adapt allocated workload to changing conditions and the performance of each individual (human and robot) during the mission is vital to maintaining overall system performance. Previous works from literature including market-based and optimization approaches have attempted to address the task/workload allocation problem with focus on maximizing the system output without regarding individual agent conditions, lacking in real-time processing and have mostly focused exclusively on multi-robot systems. Given the variety of possible combination of teams (autonomous robots and human-operated robots: any number of human operators operating any number of robots at a time) and the operational scale of MH-MR systems, development of a generalized framework of workload allocation has been a particularly challenging task. In this paper, we present such a framework for independent homogeneous missions, capable of adaptively allocating the system workload in relation to health conditions and work performances of human-operated and autonomous robots in real-time. The framework consists of removable modular function blocks ensuring its applicability to different MH-MR scenarios. A new workload transition function block ensures smooth transition without the workload change having adverse effects on individual agents. The effectiveness and scalability of the system's workload adaptability is validated by experiments applying the proposed framework in a MH-MR patrolling scenario with changing human and robot condition, and failing robots.