论文标题
熵在绝热合奏中的核心作用及其在盛大绝热合奏中的相转换中的应用
The central role of entropy in adiabatic ensembles and its application to phase transitions in the grand-isobaric adiabatic ensemble
论文作者
论文摘要
熵已经变得越来越核心,以表征,理解甚至指导组装,自组织和相变过程。在这项工作中,我们建立在等温集合中分区函数(或自由能)的类似作用和绝热集合中的熵的作用。特别是,我们表明,盛大的绝热$(μ,p,r)$集合或射线合奏提供了直接确定熵的途径。这使我们能够在热力学条件下遵循熵的变化,从而探索相变。我们通过在块状相和相边界上对氩气和铜进行蒙特卡洛模拟来测试这种方法,并通过比较等温组合中的平坦 - 固定图模拟的结果以及与实验数据来评估该方法的可靠性和准确性。该方法的优势是多重的,包括直接确定$μ-p $关系,而无需通过病毒表达来评估压力,通过$ r $的输入值对系统大小和原子数的精确控制,以及对等粒子过程的触发差差的直接计算,以确定纯粹的数量,以确定钥匙量,以确定效率的效率cyc cyc cyc cyc cyc cyc cyc cyc cyc cyc cyc cyc cyc cyc cyc cyc cyc cycsecsepty seplody cycymepty seplovy cycycynecy seplove aftery的效率为felef的效率很高。这些模拟带来的新见解是两个系统沿着过渡表现出的高度对称模式,如尺度温度 - 注入和压力渗透图所示。
Entropy has become increasingly central to characterize, understand and even guide assembly, self-organization and phase transition processes. In this work, we build on the analogous role of partition functions (or free energies) in isothermal ensembles and that of entropy in adiabatic ensembles. In particular, we show that the grand-isobaric adiabatic $(μ,P,R)$ ensemble, or Ray ensemble, provides a direct route to determine the entropy. This allows us to follow the variations of entropy with the thermodynamic conditions and thus to explore phase transitions. We test this approach by carrying out Monte Carlo simulations on Argon and Copper in bulk phases and at phase boundaries and assess the reliability and accuracy of the method through comparisons with the results from flat-histogram simulations in isothermal ensembles and with the experimental data. Advantages of the approach are multifold and include the direct determination of the $μ-P$ relation, without any evaluation of pressure via the virial expression, the precise control of the system size and of the number of atoms via the input value of $R$, and the straightforward computation of enthalpy differences for isentropic processes, which are key quantities to determine the efficiency of thermodynamic cycles. A new insight brought by these simulations is the highly symmetric pattern exhibited by both systems along the transition, as shown by scaled temperature-entropy and pressure-entropy plots.