论文标题

有效的抽样算法,用于近似时间图案计数(扩展版)

Efficient Sampling Algorithms for Approximate Temporal Motif Counting (Extended Version)

论文作者

Wang, Jingjing, Wang, Yanhao, Jiang, Wenjun, Li, Yuchen, Tan, Kian-Lee

论文摘要

从通信网络中的用户交互到金融市场的交易,可以将各种复杂的系统建模为时间表,这些图形由一组顶点和一系列的时间戳和有向的边缘组成。时间图中的时间基序是从静态图中的子图模式中概括的,这些图形考虑到边缘顺序和持续时间,除了结构外。计算时间基序的发生数量是时间网络分析的基本问题。但是,现有方法要么不能支持时间主题或遭受性能问题的困扰。在本文中,我们专注于通过随机抽样进行近似时间基序计数。我们首先提出了一种通用边缘采样(ES)算法,用于估计任何时间基序的实例数量。此外,我们设计了一种改进的EWS算法,该算法将边缘采样与楔样采样杂交,以计算具有3个顶点和3个边缘的时间基序。我们提供了我们提出算法的理论界限和复杂性的全面分析。最后,我们对几个现实世界数据集进行了广泛的实验,结果表明,与时间基序计数的最先进的采样方法相比,我们的ES和EWS算法具有更高的效率,更高的准确性和更高的可伸缩性。

A great variety of complex systems ranging from user interactions in communication networks to transactions in financial markets can be modeled as temporal graphs, which consist of a set of vertices and a series of timestamped and directed edges. Temporal motifs in temporal graphs are generalized from subgraph patterns in static graphs which take into account edge orderings and durations in addition to structures. Counting the number of occurrences of temporal motifs is a fundamental problem for temporal network analysis. However, existing methods either cannot support temporal motifs or suffer from performance issues. In this paper, we focus on approximate temporal motif counting via random sampling. We first propose a generic edge sampling (ES) algorithm for estimating the number of instances of any temporal motif. Furthermore, we devise an improved EWS algorithm that hybridizes edge sampling with wedge sampling for counting temporal motifs with 3 vertices and 3 edges. We provide comprehensive analyses of the theoretical bounds and complexities of our proposed algorithms. Finally, we conduct extensive experiments on several real-world datasets, and the results show that our ES and EWS algorithms have higher efficiency, better accuracy, and greater scalability than the state-of-the-art sampling method for temporal motif counting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源