论文标题
对数棱柱性同时学
Logarithmic Prismatic Cohomology I
论文作者
论文摘要
我们介绍了$δ$ - 环的概念的对数变体,我们称之为$δ_ {\ log} $ - 戒指,并使用它来定义Bhatt和Scholze引入的Prismatic网站的对数版本。尤其是,这使我们能够在可分离的情况下构建Breuil-kisin的共同体。
We introduce a logarithmic variant of the notion of $δ$-rings, which we call $δ_{\log}$-rings, and use it to define a logarithmic version of the prismatic site introduced by Bhatt and Scholze. In particular, this enables us to construct the Breuil-Kisin cohomology in the semistable case.