论文标题
空间相关数据的集体光谱密度估计和聚类
Collective Spectral Density Estimation and Clustering for Spatially-Correlated Data
论文作者
论文摘要
在本文中,我们开发了一种用于估算和聚类的二维光谱密度函数(2D-SDF)的方法,以从多个子区域进行空间数据。我们使用一组通用的自适应基础函数来解释低维空间中2D-SDF之间的相似性,并通过以两种惩罚来最大程度地提高晶体可能性来估算基础系数。我们应用这些惩罚来强加估计的2D-SDF的平滑度和空间相关子区域的空间依赖性。所提出的技术提供了一个得分矩阵,该矩阵由与代表2D-SDF的共同集合函数相关的估计系数组成。 {我们建议将得分矩阵用于聚类目的而不是直接聚类估计的SDF,而是利用其低维属性的优势。}在一项仿真研究中,我们证明了我们所提出的方法优于其他用于其他竞争性估计程序用于聚类。最后,为了验证所描述的聚类方法,我们将程序应用于密西西比盆地的土壤水分数据,以产生同质的空间簇。我们制作动画以动态显示估计过程,包括估计的2D-SDF和得分矩阵,这些矩阵提供了所提出方法的直观例证。
In this paper, we develop a method for estimating and clustering two-dimensional spectral density functions (2D-SDFs) for spatial data from multiple subregions. We use a common set of adaptive basis functions to explain the similarities among the 2D-SDFs in a low-dimensional space and estimate the basis coefficients by maximizing the Whittle likelihood with two penalties. We apply these penalties to impose the smoothness of the estimated 2D-SDFs and the spatial dependence of the spatially-correlated subregions. The proposed technique provides a score matrix, that is comprised of the estimated coefficients associated with the common set of basis functions representing the 2D-SDFs. {Instead of clustering the estimated SDFs directly, we propose to employ the score matrix for clustering purposes, taking advantage of its low-dimensional property.} In a simulation study, we demonstrate that our proposed method outperforms other competing estimation procedures used for clustering. Finally, to validate the described clustering method, we apply the procedure to soil moisture data from the Mississippi basin to produce homogeneous spatial clusters. We produce animations to dynamically show the estimation procedure, including the estimated 2D-SDFs and the score matrix, which provide an intuitive illustration of the proposed method.