论文标题

Merlin:用于线性,非线性和用户定义模型的混合效应回归的R软件包

merlin: An R package for Mixed Effects Regression for Linear, Nonlinear and User-defined models

论文作者

Martin, Emma C., Gasparini, Alessandro, Crowther, Michael J.

论文摘要

R软件包Merlin对分层多结果数据进行灵活的关节建模。越来越多的纵向生物标志物测量,可能会审查的活动时间和基线特征。但是,有限的软件允许将所有这些信息都合并到一个模型中。在本文中,我们介绍了Merlin,该文章允许估计具有无限数量的连续,二进制,计数和事件时间结果的模型,并具有无限水平的嵌套随机效应。为了以生物学上合理的方式链接不同的结果,可以使用多种链接函数,包括期望值,梯度和共享随机效应。随附的预测。Merlin函数允许即使是最复杂的模型进行个人和人群级别的预测。可以选择指定用户定义的家庭,从而使Merlin非常适合方法论研究。使用一个替代心脏瓣膜后跟踪的患者中的示例,以线性模型开始,并以关节多个纵向和竞争风险的生存模型结束。

The R package merlin performs flexible joint modelling of hierarchical multi-outcome data. Increasingly, multiple longitudinal biomarker measurements, possibly censored time-to-event outcomes and baseline characteristics are available. However, there is limited software that allows all of this information to be incorporated into one model. In this paper, we present merlin which allows for the estimation of models with unlimited numbers of continuous, binary, count and time-to-event outcomes, with unlimited levels of nested random effects. A wide variety of link functions, including the expected value, the gradient and shared random effects, are available in order to link the different outcomes in a biologically plausible way. The accompanying predict.merlin function allows for individual and population level predictions to be made from even the most complex models. There is the option to specify user-defined families, making merlin ideal for methodological research. The flexibility of merlin is illustrated using an example in patients followed up after heart valve replacement, beginning with a linear model, and finishing with a joint multiple longitudinal and competing risks survival model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源