论文标题

Descargan:疾病特异性的异常检测,监督较弱

DeScarGAN: Disease-Specific Anomaly Detection with Weak Supervision

论文作者

Wolleb, Julia, Sandkühler, Robin, Cattin, Philippe C.

论文摘要

医学图像中的异常检测和定位是一项具有挑战性的任务,尤其是当异常发生变化,例如脑萎缩或由于胸膜积液而导致的胸膜空间变化时。在这项工作中,我们提出了一种弱监督和细节的方法,该方法能够检测现有解剖结构的结构变化。与标准异常检测方法相反,我们的方法从两组中提取了有关疾病特征的信息:一组受同一疾病影响的患者和健康对照组。连同具有身份的机制,这使我们的方法能够提取高度疾病特异性的特征,以更详细地检测结构变化。我们设计了一个特定的合成数据集,以评估和比较我们的方法与最新的异常检测方法。最后,我们在胸部X射线图像上显示了方法的性能。我们称为Descargan的方法优于合成数据集的其他异常检测方法,并通过对胸部X射线图像数据集的目视检查。

Anomaly detection and localization in medical images is a challenging task, especially when the anomaly exhibits a change of existing structures, e.g., brain atrophy or changes in the pleural space due to pleural effusions. In this work, we present a weakly supervised and detail-preserving method that is able to detect structural changes of existing anatomical structures. In contrast to standard anomaly detection methods, our method extracts information about the disease characteristics from two groups: a group of patients affected by the same disease and a healthy control group. Together with identity-preserving mechanisms, this enables our method to extract highly disease-specific characteristics for a more detailed detection of structural changes. We designed a specific synthetic data set to evaluate and compare our method against state-of-the-art anomaly detection methods. Finally, we show the performance of our method on chest X-ray images. Our method called DeScarGAN outperforms other anomaly detection methods on the synthetic data set and by visual inspection on the chest X-ray image data set.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源