论文标题

在由阳性和非负矩阵产生的实际代数上

On real algebras generated by positive and nonnegative matrices

论文作者

Kolegov, N. A.

论文摘要

严格阳性矩阵产生的代数被描述为相似性,包括交换性,简单和半神经案例。我们提供了足够的条件,使某些块对角基质代数由一组非负矩阵产生,直到相似性。我们还发现,两个非负半共同矩阵产生的代数的所有可实现维度。最后的结果为M.Kandić,K.šivic(2017)提出的问题提供了解决方案。

Algebras generated by strictly positive matrices are described up to similarity, including the commutative, simple, and semisimple cases. We provide sufficient conditions for some block diagonal matrix algebras to be generated by a set of nonnegative matrices up to similarity. Also we find all realizable dimensions of algebras generated by two nonnegative semi-commuting matrices. The last result provides the solution to the problem posed by M. Kandić, K. Šivic (2017).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源