论文标题
冰的生长如何取决于下面的流体动力学
How the growth of ice depends on the fluid dynamics underneath
论文作者
论文摘要
对流流以及水体中的凝固或熔化在塑造地球物理景观中起着重要作用。特别是与全球气候变暖方案有关,必须准确量化水体环境如何与冰形成或熔化过程进行动态相互作用至关重要。先前的研究揭示了结冰过程的复杂性质,但通常忽略了水的最显着特殊性之一,其密度异常以及诱导的分层层在存在湍流和相变的情况下以复杂的方式相互作用和耦合。通过结合实验,数值模拟和理论建模,我们研究了淡水的凝固,正确考虑相变,水密度异常以及冰和水相的真实物理特性,我们证明这对于正确预测不同的定性和定量行为至关重要。随着热驾驶的增加,我们确定了四个不同的流动性方案,其中发生了稳定且不稳定地分层的水层之间的不同水平的耦合。尽管冰面和流体运动之间存在复杂的相互作用,但可以通过理论模型很好地捕获平均冰厚度和生长速率。据揭示,热驱动对全球结冰过程的时间演变具有重大影响,这可能从几天到几个小时不等。我们的模型可以应用于在不同的热和几何条件下(例如冷却条件或水层深度)下发生结冰动力学的一般情况。
Convective flows coupled with solidification or melting in water bodies play a major role in shaping geophysical landscapes. Particularly in relation to the global climate warming scenario, it is essential to be able to accurately quantify how water-body environments dynamically interplay with ice formation or melting process. Previous studies have revealed the complex nature of the icing process, but have often ignored one of the most remarkable particularity of water, its density anomaly, and the induced stratification layers interacting and coupling in a complex way in presence of turbulence and phase change. By combining experiments, numerical simulations, and theoretical modeling, we investigate solidification of freshwater, properly considering phase transition, water density anomaly, and real physical properties of ice and water phases, which we show to be essential for correctly predicting the different qualitative and quantitative behaviors. We identify, with increasing thermal driving, four distinct flow-dynamics regimes, where different levels of coupling among ice front, stably and unstably stratified water layers occur. Despite the complex interaction between the ice front and fluid motions, remarkably, the average ice thickness and growth rate can be well captured with the theoretical model. It is revealed that the thermal driving has major effects on the temporal evolution of the global icing process, which can vary from a few days to a few hours in the current parameter regime. Our model can be applied to general situations where the icing dynamics occurs under different thermal and geometrical conditions (e.g. cooling conditions or water layer depth).