论文标题

使用贝叶斯优化对激光韦克菲尔德加速器的自动化和控制

Automation and control of laser wakefield accelerators using Bayesian optimisation

论文作者

Shalloo, R. J., Dann, S. J. D., Gruse, J. -N., Underwood, C. I. D., Antoine, A. F., Arran, C., Backhouse, M., Baird, C. D., Balcazar, M. D., Bourgeois, N., Cardarelli, J. A., Hatfield, P., Kang, J., Krushelnick, K., Mangles, S. P. D., Murphy, C. D., Lu, N., Osterhoff, J., Põder, K., Rajeev, P. P., Ridgers, C. P., Rozario, S., Selwood, M. P., Shahani, A. J., Symes, D. R., Thomas, A. G. R., Thornton, C., Najmudin, Z., Streeter, M. J. V.

论文摘要

激光韦克菲尔德加速器有望彻底改变加速器科学领域的许多领域。但是,由于输入参数之间的耦合以及加速结构的动态演变,因此难以控制和优化加速器输出的最大挑战之一。在这里,我们使用机器学习技术来自动化100 MEV尺度加速器,该加速器通过同时改变多达6个参数,包括激光的光谱和空间阶段以及等离子密度和长度,从而优化了其输出。最值得注意的是,算法构建的模型启用了激光演化的优化,否则在单变量扫描中可能会遗漏。激光脉冲形状的微妙调整导致电子束电荷增加80%,尽管脉冲长度仅改变了1%。

Laser wakefield accelerators promise to revolutionise many areas of accelerator science. However, one of the greatest challenges to their widespread adoption is the difficulty in control and optimisation of the accelerator outputs due to coupling between input parameters and the dynamic evolution of the accelerating structure. Here, we use machine learning techniques to automate a 100 MeV-scale accelerator, which optimised its outputs by simultaneously varying up to 6 parameters including the spectral and spatial phase of the laser and the plasma density and length. Most notably, the model built by the algorithm enabled optimisation of the laser evolution that might otherwise have been missed in single-variable scans. Subtle tuning of the laser pulse shape caused an 80% increase in electron beam charge, despite the pulse length changing by just 1%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源