论文标题
(非平衡)可整合模型的热力学:经典诺伊曼模型的广义吉布斯集合描述
(Non equilibrium) Thermodynamics of Integrable models: The Generalized Gibbs Ensemble description of the classical Neumann Model
论文作者
论文摘要
我们研究了一个经典的集成(Neumann)模型,该模型描述了粒子在球体上的运动,但要受谐波力。我们通过引入软版本来解决无限尺寸限制的问题,其中仅在初始条件下平均施加球形约束。我们表明,广义的吉布斯合奏捕获了软模型的长期平均值。我们揭示了全动态相图,并具有扩展,准定的,坐标和坐标和动量符合的相位。波动的缩放特性使我们能够确定在哪种情况下,严格和软球形约束是等效的,从而在动态相图的很大一部分上证实了GGE假设对Neumann模型的有效性。
We study a classical integrable (Neumann) model describing the motion of a particle on the sphere, subject to harmonic forces. We tackle the problem in the infinite dimensional limit by introducing a soft version in which the spherical constraint is imposed only on average over initial conditions. We show that the Generalized Gibbs Ensemble captures the long-time averages of the soft model. We reveal the full dynamic phase diagram with extended, quasi-condensed, coordinate-, and coordinate and momentum-condensed phases. The scaling properties of the fluctuations allow us to establish in which cases the strict and soft spherical constraints are equivalent, confirming the validity of the GGE hypothesis for the Neumann model on a large portion of the dynamic phase diagram.