论文标题
海底电缆网络的最佳树拓扑结构有限
Optimal Tree Topology for a Submarine Cable Network With Constrained Internodal Latency
论文作者
论文摘要
本文在3D欧几里得空间中的不规则2D歧管中为树木 - 流行网络提供了优化的电缆路径计划解决方案,并应用于潜艇电缆网络的规划。我们的解决方案方法基于总成本最小化,其中假定各个电缆成本是线性的,至相对的淋巴结之间受延迟约束的相应海底电缆的长度。这些延迟约束限制了任何一对节点之间的电缆长度和啤酒花数量。我们的方法结合了快速行进方法(FMM)和新的整数线性编程(ILP)公式,用于最小生成树(MST),其中有限制的节点之间存在约束。我们注意到,与约束的MST问题是NP完整的。尽管如此,我们证明了ILP运行时间足以满足大多数现有电缆系统。对于ILP无法在可接受的时间内找到最佳解决方案的电缆系统,我们提出了一种基于PRIM的算法的替代启发式算法。此外,我们将基于FMM/ILP的算法应用于现实世界的有线路径计划示例,并证明它可以有效地找到一个在节点对之间具有延迟约束的MST。
This paper provides an optimized cable path planning solution for a tree-topology network in an irregular 2D manifold in a 3D Euclidean space, with an application to the planning of submarine cable networks. Our solution method is based on total cost minimization, where the individual cable costs are assumed to be linear to the length of the corresponding submarine cables subject to latency constraints between pairs of nodes. These latency constraints limit the cable length and number of hops between any pair of nodes. Our method combines the Fast Marching Method (FMM) and a new Integer Linear Programming (ILP) formulation for Minimum Spanning Tree (MST) where there are constraints between pairs of nodes. We note that this problem of MST with constraints is NP-complete. Nevertheless, we demonstrate that ILP running time is adequate for the great majority of existing cable systems. For cable systems for which ILP is not able to find the optimal solution within an acceptable time, we propose an alternative heuristic algorithm based on Prim's algorithm. In addition, we apply our FMM/ILP-based algorithm to a real-world cable path planning example and demonstrate that it can effectively find an MST with latency constraints between pairs of nodes.