论文标题
带量子声子的su-schrieffer-Heeger模型中自旋 - 旋转的变异波函数
Variational wave functions for the spin-Peierls transition in the Su-Schrieffer-Heeger model with quantum phonons
论文作者
论文摘要
我们引入了变分波函数,以评估Su-Schrieffer-Heeger模型所描述的自旋偶联系统的地面特性。量子旋转和声子在蒙特卡洛采样中的平等基础上进行处理,并研究了不同的机制。我们表明,所提出的变异ANSATZ与先前的密度 - 矩阵重质化组产生了良好的一致性,从而导致一个维度,并能够准确地描述自旋旋转的过渡。这种变异方法既不受磁弹性耦合强度的限制,也不受到所考虑的系统的维度的限制,从而允许在更一般的情况下进行未来的研究,这些情况与两个空间维度相关的旋转液体和拓扑阶段。
We introduce variational wave functions to evaluate the ground-state properties of spin-phonon coupled systems described by the Su-Schrieffer-Heeger model. Quantum spins and phonons are treated on equal footing within a Monte Carlo sampling, and different regimes are investigated. We show that the proposed variational Ansatz yields good agreement with previous density-matrix renormalization group results in one dimension and is able to accurately describe the spin-Peierls transition. This variational approach is neither constrained by the magnetoelastic-coupling strength nor by the dimensionality of the systems considered, thus allowing future investigations in more general cases, which are relevant to spin-liquid and topological phases in two spatial dimensions.