论文标题

在高度限制的空间中朝着敏捷的演习:从幻觉中学习

Toward Agile Maneuvers in Highly Constrained Spaces: Learning from Hallucination

论文作者

Xiao, Xuesu, Liu, Bo, Warnell, Garrett, Stone, Peter

论文摘要

尽管当前在某些环境中实现自动机器人导航的经典方法,但它们在紧密约束的空间中分解,例如机器人需要进行敏捷的操作以在障碍之间挤压。最近的机器学习技术有可能解决这一缺点,但是现有的方法需要大量的导航经验来进行培训,在此期间,机器人必须在障碍物和风险碰撞附近工作。在本文中,我们建议通过引入一个新的机器学习范式来辅助此要求,用于自动导航,称为“从幻觉中学习”(LFH),该导航可以使用在完全安全的环境中收集的培训数据来计算导航控制器,从而在高度受约束环境中实现快速,平稳且安全的导航。我们的实验结果表明,所提出的LFH系统在真实机器人上的表现优于三个自动导航基线,并将其推广到看不见的环境,包括基于经典和机器学习技术的环境。

While classical approaches to autonomous robot navigation currently enable operation in certain environments, they break down in tightly constrained spaces, e.g., where the robot needs to engage in agile maneuvers to squeeze between obstacles. Recent machine learning techniques have the potential to address this shortcoming, but existing approaches require vast amounts of navigation experience for training, during which the robot must operate in close proximity to obstacles and risk collision. In this paper, we propose to side-step this requirement by introducing a new machine learning paradigm for autonomous navigation called learning from hallucination (LfH), which can use training data collected in completely safe environments to compute navigation controllers that result in fast, smooth, and safe navigation in highly constrained environments. Our experimental results show that the proposed LfH system outperforms three autonomous navigation baselines on a real robot and generalizes well to unseen environments, including those based on both classical and machine learning techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源