论文标题

有限交换性的涉及残留晶格的结构

The structure of finite commutative idempotent involutive residuated lattices

论文作者

Jipsen, Peter, Tuyt, Olim, Valota, Diego

论文摘要

我们将交换性涉及的残留晶格表征为在分布晶格上排列的布尔代数的脱节工会。我们使用此描述引入了一种称为Gluing的新结构,该结构使我们能够从其他胶片中构建该品种的新成员。特别是,所有有限成员都可以从布尔代数以这种方式构建。最后,我们运用我们的构造来证明任何有限成员的融合还原是分布式半层次,并且表明该品种不是局部有限的。

We characterize commutative idempotent involutive residuated lattices as disjoint unions of Boolean algebras arranged over a distributive lattice. We use this description to introduce a new construction, called gluing, that allows us to build new members of this variety from other ones. In particular, all finite members can be constructed in this way from Boolean algebras. Finally, we apply our construction to prove that the fusion reduct of any finite member is a distributive semilattice, and to show that this variety is not locally finite.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源