论文标题
动荡的电晕中的无线电回声和太阳漂移对无线电爆发的模拟
Radio Echo in the Turbulent Corona and Simulations of Solar Drift-Pair Radio Bursts
论文作者
论文摘要
漂移对爆发是一种异常的太阳能低频无线电发射,在动态光谱中出现,随着时间的流逝,两个平行的漂移亮条纹分开。最近的成像光谱观察结果允许根据源大小,位置和进化来对漂移对的定量表征。在这里,对漂移对参数进行了定性分析,并将其与新开发的蒙特卡洛射线追踪技术进行了比较,该技术模拟了不均匀性各向异性湍流太阳能电晕中的无线电波传播。结果表明,由于折射和散射过程的结合,可以形成漂移对突发,而后段组件是湍流反射的结果(湍流无线电回声)。漂移对突发的形成需要各向异性散射,血浆密度波动的水平与III型爆发相当,但在内部湍流尺度上具有更强的各向异性。各向异性无线电波散射模型可以定量地重现漂移对突发的关键特性:明显的源大小及其在给定频率下的时间增加,源质心位置的平行运动以及突发组件之间的延迟。发现尾随组件实际上是共同空间的,并且遵循主组件。这些模拟表明,由于自由吸收和散射的影响,可能会观察到靠近磁盘中心的漂移对突发。漂移对的激发仪与传播的吹口哨一致一致,从而使一种令人着迷的方法诊断出血浆湍流和无线电发射机制。
Drift-pair bursts are an unusual type of solar low-frequency radio emission, which appear in the dynamic spectra as two parallel drifting bright stripes separated in time. Recent imaging spectroscopy observations allowed for the quantitative characterization of the drifting pairs in terms of source size, position, and evolution. Here, the drift-pair parameters are qualitatively analyzed and compared with the newly-developed Monte Carlo ray-tracing technique simulating radio-wave propagation in the inhomogeneous anisotropic turbulent solar corona. The results suggest that the drift-pair bursts can be formed due to a combination of the refraction and scattering processes, with the trailing component being the result of turbulent reflection (turbulent radio echo). The formation of drift-pair bursts requires an anisotropic scattering with the level of plasma density fluctuations comparable to that in type III bursts, but with a stronger anisotropy at the inner turbulence scale. The anisotropic radio-wave scattering model can quantitatively reproduce the key properties of drift-pair bursts: the apparent source size and its increase with time at a given frequency, the parallel motion of the source centroid positions, and the delay between the burst components. The trailing component is found to be virtually co-spatial and following the main component. The simulations suggest that the drift-pair bursts are likely to be observed closer to the disk center and below 100 MHz due to the effects of free-free absorption and scattering. The exciter of drift-pairs is consistent with propagating packets of whistlers, allowing for a fascinating way to diagnose the plasma turbulence and the radio emission mechanism.