论文标题

标量场拓扑的渐进式方法

A Progressive Approach to Scalar Field Topology

论文作者

Vidal, Jules, Guillou, Pierre, Tierny, Julien

论文摘要

本文介绍了标量数据拓扑分析的进行性算法。我们的方法基于输入数据的层次结构表示和拓扑上不变的顶点的快速识别,这些顶点是对数据的拓扑描述没有影响的顶点,并且我们表明,在层次结构中介绍了它们所需的差异。这可以定义有效的粗到精细拓扑算法,该算法利用了普通顶点的快速更新机制,并避免对拓扑不变的机制进行计算。我们通过两个拓扑算法的示例(临界点提取和持久图计算)演示了我们的方法,它们在中断请求时会产生可解释的输出,否则会逐渐完善它们。现实数据集的实验表明,除了它提供的连续视觉反馈外,我们的渐进策略甚至可以改善非促进算法的运行时间性能,我们描述了具有共享内存并行性的进一步加速度。我们在批处理模式和交互式设置中说明了我们的方法的实用性,在该设置中,它分别可以控制完整拓扑管道的执行时间,以及数据集中发现的拓扑功能的预览,并在交互式时间内提供了渐进更新。

This paper introduces progressive algorithms for the topological analysis of scalar data. Our approach is based on a hierarchical representation of the input data and the fast identification of topologically invariant vertices, which are vertices that have no impact on the topological description of the data and for which we show that no computation is required as they are introduced in the hierarchy. This enables the definition of efficient coarse-to-fine topological algorithms, which leverage fast update mechanisms for ordinary vertices and avoid computation for the topologically invariant ones. We demonstrate our approach with two examples of topological algorithms (critical point extraction and persistence diagram computation), which generate interpretable outputs upon interruption requests and which progressively refine them otherwise. Experiments on real-life datasets illustrate that our progressive strategy, in addition to the continuous visual feedback it provides, even improves run time performance with regard to non-progressive algorithms and we describe further accelerations with shared-memory parallelism. We illustrate the utility of our approach in batch-mode and interactive setups, where it respectively enables the control of the execution time of complete topological pipelines as well as previews of the topological features found in a dataset, with progressive updates delivered within interactive times.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源