论文标题

金纳米颗粒放射敏化的异质多尺度蒙特卡洛模拟

Heterogeneous multiscale Monte Carlo simulations for gold nanoparticle radiosensitization

论文作者

Martinov, Martin P., Thomson, Rowan M.

论文摘要

为了引入用于金纳米颗粒剂量增强辐射疗法(GNPT)的蒙特卡洛模拟的异质多尺度模型(GNPT),该模型以单个幻影内不同长度尺度上不同的细节级别的特征。在与GNPT相关的两种不同方案中应用HETM模型,并将计算结果与已发布的其他情况进行比较。 HETM模型在EGSNRC中实现;该代码是通过与独立金纳米颗粒(GNP)模拟的已发布数据进行比较测试的。考虑了HETMS模型的两个不同的情况:(1)出现在大圆柱上的单角光子光束; (2)大球的中心的各向同性点源,GNP从中心扩散。比较不同源能量,深度,金浓度,GNP大小和建模假设的剂量增强因子(DEF)。研究了模拟效率。 HETMS MC模拟解释了光子通量扰动的竞争效应以及局部能量沉积增强。 DEF对这些效应对较低的源能量最敏感,随着距离源的距离而变化。低于统一的DEF可以以与近距离放射治疗相关的能量发生。与GNP在整个含金量中的离散建模相比,使用HETMS方法,效率提高了122倍。对于球形幻影,DEF随时间而变化,用于扩散,放射性核素和半径。通过在单个仿真中结合不同长度尺度上不同复杂性的几何模型,HETMS模型可以有效地解释宏观和显微镜效应。效率通过HETM方法提高,可以实现多种计算,否则这些计算将是过长的。 HETMS模型可能会扩展到与GNPT相关的各种情况,从而为研发提供了进一步的途径。

To introduce the heterogeneous multiscale (HetMS) model for Monte Carlo simulations of gold nanoparticle dose-enhanced radiation therapy (GNPT), a model characterized by its varying levels of detail on different length scales within a single phantom; to apply the HetMS model in two different scenarios relevant for GNPT and to compare computed results with others published. The HetMS model is implemented in EGSnrc; the code is tested via comparisons with published data from independent gold nanoparticle (GNP) simulations. Two distinct scenarios for the HetMS model are considered: (1) monoenergetic photon beams incident on a large cylinder; (2) isotropic point source at the center of a large sphere with GNPs diffusing from the center. Dose enhancement factors (DEFs) are compared for different source energies, depths, gold concentrations, GNP sizes, and modeling assumptions. Simulation efficiencies are investigated. The HetMS MC simulations account for the competing effects of photon fluence perturbation coupled with enhanced local energy deposition. DEFs are most sensitive to these effects for lower source energies, varying with distance from the source; DEFs below unity can occur at energies relevant for brachytherapy. Compared to discrete modeling of GNPs throughout the gold-containing volume, efficiencies are enhanced by up to a factor of 122 with the HetMS approach. For the spherical phantom, DEFs vary with time for diffusion, radionuclide, and radius. By combining geometric models of varying complexity on different length scales within a single simulation, the HetMS model can effectively account for both macroscopic and microscopic effects. Efficiency gains with the HetMS approach enable diverse calculations which would otherwise be prohibitively long. The HetMS model may be extended to diverse scenarios relevant for GNPT, providing further avenues for research and development.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源