论文标题

连续体对周期结构中结合状态的参数依赖性

Parametric Dependence of Bound States in the Continuum on Periodic Structures

论文作者

Yuan, Lijun, Lu, Ya Yan

论文摘要

连续体(BICS)中的绑定状态具有一些异常的特性,并且在光子学中具有重要的应用。夹在两个均质媒体之间的周期性结构是观察BIC和实现其应用的最受欢迎的平台。现有对BIC的研究假设周期性结构在垂直于周期层的轴上具有$ C_2 $旋转对称性。众所周知,如果周期性结构受到损坏的打破$ C_2 $对称性的扰动,所有BIC都会转向具有有限质量因素的共鸣状态,并且如果扰动保持$ C_2 $对称性,则将继续存在典型的BIC。我们研究典型的BIC如何依赖通用的结构参数。对于具有一个开放辐射通道的一类BIC,我们表明,在两个通用参数的平面中,BICS连续存在为曲线。因此,BIC可以在没有$ C_2 $对称的周期性结构上存在,并且可以通过调整单个结构参数来找到它们。该结果是通过具有两个独立扰动的扰动理论来分析建立的,并通过数值示例验证。我们的研究揭示了一个更大的家庭定期结构的家庭,并为将来的应用提供了新的机会。

Bound states in the continuum (BICs) have some unusual properties and important applications in photonics. A periodic structure sandwiched between two homogeneous media is the most popular platform for observing BICs and realizing their applications. Existing studies on BICs assume the periodic structure has a $C_2$ rotational symmetry about the axis perpendicular to the periodic layer. It is known that all BICs turn to resonant states with finite quality factors if the periodic structure is perturbed by a generic perturbation breaking the $C_2$ symmetry, and a typical BIC continues to exist if the perturbation keeps the $C_2$ symmetry. We study how typical BICs depend on generic structural parameters. For a class of BICs with one opening radiation channel, we show that in the plane of two generic parameters, the BICs exist continuously as a curve. Consequently, BICs can exist on periodic structures without the $C_2$ symmetry, and they can be found by tuning a single structural parameter. The result is established analytically by a perturbation theory with two independent perturbations and validated by numerical examples. Our study reveals a much larger family for BICs on periodic structures, and provides new opportunities for future applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源