论文标题
提高概率选择基于可满足问题的权重
Improving probability selecting based weights for Satisfiability Problem
论文作者
论文摘要
布尔可满足性问题(SAT)对人工智能界及其解决对复杂问题的影响很重要。最近,在随机搜索(SLS)算法的均匀随机K-SAT算法上分别进行了重大突破,从而导致了几种最先进的SLS算法得分2SAT,Yalsat,yalsat,probsat,cscoresat,cscoresat,cscoresat,cscoresat和the Hard andrid sat(HRS)的混合算法(HRS)在一个Stontate-Art-Art-Arts sattars spart spart spart spart spart spart sprit algor algor algor albrith andriSs sprith中。但是,没有一种算法可以有效地解决均匀的随机K-SAT和HRS。在本文中,我们提出了一种新的SLS算法,称为均匀的随机K-SAT和HRS的selectnts。 SELECTNT是一种改进的概率,选择SAT问题的基于本地搜索算法。 SelectNT的核心依赖于新从句和可变选择启发式方法。新条款选择启发式方法使用新的子句加权方案和偏见的随机步行。新的变量选择启发式方法使用概率选择策略,其基于新变量加权方案的CC策略的变化。关于2017年和2018年SAT竞赛以及随机产生的问题的众所周知的随机基准实例的广泛实验结果表明,我们的算法优于最先进的随机SAT算法,我们的SELECTNT可以有效地解决均匀的随机K-SAT和HRS。
The Boolean Satisfiability problem (SAT) is important on artificial intelligence community and the impact of its solving on complex problems. Recently, great breakthroughs have been made respectively on stochastic local search (SLS) algorithms for uniform random k-SAT resulting in several state-of-the-art SLS algorithms Score2SAT, YalSAT, ProbSAT, CScoreSAT and on a hybrid algorithm for hard random SAT (HRS) resulting in one state-of-the-art hybrid algorithm SparrowToRiss. However, there is no an algorithm which can effectively solve both uniform random k-SAT and HRS. In this paper, we present a new SLS algorithm named SelectNTS for uniform random k-SAT and HRS. SelectNTS is an improved probability selecting based local search algorithm for SAT problem. The core of SelectNTS relies on new clause and variable selection heuristics. The new clause selection heuristic uses a new clause weighting scheme and a biased random walk. The new variable selection heuristic uses a probability selecting strategy with the variation of CC strategy based on a new variable weighting scheme. Extensive experimental results on the well-known random benchmarks instances from the SAT Competitions in 2017 and 2018, and on randomly generated problems, show that our algorithm outperforms state-of-the-art random SAT algorithms, and our SelectNTS can effectively solve both uniform random k-SAT and HRS.