论文标题

用于中子光谱展开的两种进化算法的健身函数的研究

Research on Fitness Function of Two Evolution Algorithms Used for Neutron Spectrum Unfolding

论文作者

Li, Rui, Yang, Jianbo, Tuo, Xianguo, Shi, Rui

论文摘要

当使用进化算法展开中子能量谱时,健身功能设计是评估溶液质量的重要基本工作,但并没有吸引太多关注。在这项工作中,我们研究了遗传算法(GA)附加的八种适应性功能的性能以及用于展开从IAEA 403报告中选择的四个中子光谱的差异进化算法(DEA)的性能。实验表明,适应性功能在GA中的最大功能可以限制人群感知适应性变化的能力,但是该能力可以在DEA中弥补。具有特征惩罚项的健身函数有助于提高解决方案的性能,并且使用标准偏差的健身函数,卡方结果显示算法和光谱之间的平衡。结果还表明,DEA具有良好的中子能量谱展开的潜力。这项工作的目的是为结构和修改适应性功能提供证据,并提出一些遗传操作,这些遗传操作在使用健身功能展现中子光谱时应受到关注。

When evolution algorithms are used to unfold the neutron energy spectrum, fitness function design is an important fundamental work for evaluating the quality of the solution, but it has not attracted much attention. In this work, we investigated the performance of eight fitness functions attached to the genetic algorithm (GA) and the differential evolution algorithm (DEA) used for unfolding four neutron spectra selected from the IAEA 403 report. Experiments show that the fitness functions with a maximum in the GA can limit the ability of the population to percept the fitness change, but the ability can be made up in the DEA. The fitness function with a feature penalty term helps to improve the performance of solutions, and the fitness function using the standard deviation and the Chi-squared result shows the balance between the algorithm and the spectra. The results also show that the DEA has good potential for neutron energy spectrum unfolding. The purposes of this work are to provide evidence for structuring and modifying the fitness functions and to suggest some genetic operations that should receive attention when using the fitness function to unfold neutron spectra.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源