论文标题

无监督的深度学习,用于超分辨率重建湍流

Unsupervised deep learning for super-resolution reconstruction of turbulence

论文作者

Kim, Hyojin, Kim, Junhyuk, Won, Sungjin, Lee, Changghoon

论文摘要

最近尝试将深度学习进行超分辨率重建的尝试使用了监督学习,这需要配对的数据进行培训。这种限制阻碍了超分辨率重建的更实际应用。因此,我们提出了一种无监督的学习模型,该模型采用了一个循环符合的生成对抗网络,该网络可以通过未配对的湍流数据进行训练,以进行超分辨率重建。使用三个示例对我们的模型进行了验证:(i)使用均质各向同性湍流的直接数值模拟(DNS)从过滤数据中恢复原始流场; (ii)使用来自湍流通道流的DNS的部分测量数据重建完整的字段; (iii)从大型涡流模拟(LES)数据中生成DNS分辨率流场,以用于湍流通道流。在示例(i)和(ii)的示例中,为了进行配对的数据可用于监督学习,我们的无监督模型在定性和定量上与最佳监督学习模型的性能相似。更重要的是,例如(iii),如果不可能进行监督学习,我们的模型成功地从LES数据中重建了统计DNS质量的高分辨率流场。这表明,确实可以学习湍流数据的学习,为广泛应用湍流领域的超分辨率重建开辟了新的门。

Recent attempts to use deep learning for super-resolution reconstruction of turbulent flows have used supervised learning, which requires paired data for training. This limitation hinders more practical applications of super-resolution reconstruction. Therefore, we present an unsupervised learning model that adopts a cycle-consistent generative adversarial network that can be trained with unpaired turbulence data for super-resolution reconstruction. Our model is validated using three examples: (i) recovering the original flow field from filtered data using direct numerical simulation (DNS) of homogeneous isotropic turbulence; (ii) reconstructing full-resolution fields using partially measured data from the DNS of turbulent channel flows; and (iii) generating a DNS-resolution flow field from large eddy simulation (LES) data for turbulent channel flows. In examples (i) and (ii), for which paired data are available for supervised learning, our unsupervised model demonstrates qualitatively and quantitatively similar performance as that of the best supervised-learning model. More importantly, in example (iii), where supervised learning is impossible, our model successfully reconstructs the high-resolution flow field of statistical DNS quality from the LES data. This demonstrates that unsupervised learning of turbulence data is indeed possible, opening a new door for the wide application of super-resolution reconstruction of turbulent fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源