论文标题
实验性半自治的特征索使用加固学习
Experimental semi-autonomous eigensolver using reinforcement learning
论文作者
论文摘要
通过Hermitian操作员表达的可观察物的表征是量子力学中的至关重要的任务。因此,本ensolver是任何量子技术的基本算法。在这项工作中,我们实施了一种半自治算法,以使用IBM量子计算机来获得任意遗传操作员的特征向量的近似值。为此,我们仅使用单发测量和伪随机变化,通过反馈循环处理,从而减少了系统中的测量次数。由于经典的反馈循环,该算法可以放入增强学习范式中。对于可观察到的单晶算法,我们获得了两个超过0.97的特征向量,并获得了大约200张单发测量值。对于两个Qubits的可观察物,我们获得了超过0.91的保真度,对于四个特征向量,这是一个相对较低的资源需求,适用于当前设备,这是四个特征向量的1500个单次测量。这项工作对于能够使用部分信息决定的量子设备的开发很有用,这有助于实施量子人工智能中的未来技术。
The characterization of observables, expressed via Hermitian operators, is a crucial task in quantum mechanics. For this reason, an eigensolver is a fundamental algorithm for any quantum technology. In this work, we implement a semi-autonomous algorithm to obtain an approximation of the eigenvectors of an arbitrary Hermitian operator using the IBM quantum computer. To this end, we only use single-shot measurements and pseudo-random changes handled by a feedback loop, reducing the number of measures in the system. Due to the classical feedback loop, this algorithm can be cast into the reinforcement learning paradigm. Using this algorithm, for a single-qubit observable, we obtain both eigenvectors with fidelities over 0.97 with around 200 single-shot measurements. For two-qubits observables, we get fidelities over 0.91 with around 1500 single-shot measurements for the four eigenvectors, which is a comparatively low resource demand, suitable for current devices. This work is useful to the development of quantum devices able to decide with partial information, which helps to implement future technologies in quantum artificial intelligence.