论文标题
稀疏高维矢量自动加入的结构推断
Structural Inference in Sparse High-Dimensional Vector Autoregressions
论文作者
论文摘要
我们考虑了稀疏,结构高维矢量自回旋(SVAR)系统中脉冲反应的统计推断。我们在高维设置中介绍了脉冲响应的一致估计量,并建议针对相同参数的有效推理程序。由于标准程序(如Delta-Method)不适用,因此在我们的环境中的统计推断更加涉及。通过使用本地投影方程,我们首先构建了与VAR系统相关的移动平均参数的正规化估计器的De-parsified版本。然后,我们通过将上述DE-SPARSPARSPARSASSPARSASIFE估算器与同期影响矩阵的非调数估计量相结合,从而获得结构脉冲响应的估计值,这也考虑到了系统的高差异性。我们表明,结构脉冲响应的衍生估计值的分布具有高斯极限。我们还提出了一个有效的引导程序,以估计此分布。提出了推理程序在构建置信区间的脉冲响应以及预测误差方差分解的测试中的应用。通过模拟说明了我们的程序。
We consider statistical inference for impulse responses in sparse, structural high-dimensional vector autoregressive (SVAR) systems. We introduce consistent estimators of impulse responses in the high-dimensional setting and suggest valid inference procedures for the same parameters. Statistical inference in our setting is much more involved since standard procedures, like the delta-method, do not apply. By using local projection equations, we first construct a de-sparsified version of regularized estimators of the moving average parameters associated with the VAR system. We then obtain estimators of the structural impulse responses by combining the aforementioned de-sparsified estimators with a non-regularized estimator of the contemporaneous impact matrix, also taking into account the high-dimensionality of the system. We show that the distribution of the derived estimators of structural impulse responses has a Gaussian limit. We also present a valid bootstrap procedure to estimate this distribution. Applications of the inference procedure in the construction of confidence intervals for impulse responses as well as in tests for forecast error variance decomposition are presented. Our procedure is illustrated by means of simulations.